

SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN

MOTOR BEBEK DENGAN MENGGUNAKAN METODE

SIMPLE ADDITIVE WEIGHTING (SAW)

SKRIPSI

Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi Sistem Informasi Fakultas Teknik Universitas Nusantara PGRI Kediri

OLEH:

NUR KHOLIQ

NPM: 10.1.03.03.0148

FAKULTAS TEKNIK
PROGRAM STUDI SISTEM INFORMASI
UNIVERSITAS NUSANTARA PGRI KEDIRI
2015

NUR KHOLIQ | 10.1.03.03.0148

Skripsi oleh:

NUR KHOLIQ

NPM: 10.1.03.03.0148

Judul:

SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN MOTOR BEBEK DENGAN MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW)

Telah disetujui untuk diajukan Kepada Panitia Ujian/Sidang Skripsi Jurusan Sistem Informasi Fakultas Teknik Universitas Nusantara PGRI Kediri

Tanggal: 23 Mei 2015

Skipsi oleh:

NUR KHOLIQ

NPM: 10.1.03.03.0148

Judul:

SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN MOTOR BEBEK DENGAN MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW)

Telah dipertahankan didepan Panitia Ujian/Sidang Skripsi Jurusan Sistem Informasi Fakultas Teknik Universitas Nusantara PGRI Kediri Pada tanggal: 23 Mei 2015

Dan Dinyatakan Telah Memenuhi Persyaratan

Panitia Penguji:

: Rini Indriati, S.Kom., M.Kom. Ketua

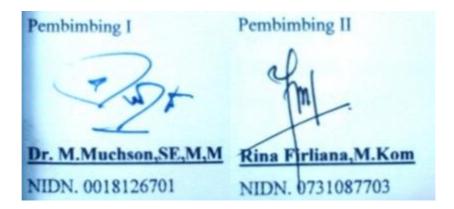
Penguji I : Suratman, SH., M.Pd

Penguji II : Agustono Heriadi, S.ST., M.Kom

Mengetahui,

Dekan Fakultas Teknik

Kom., M.Kom.



SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN MOTOR BEBEK DENGAN MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW)

NUR KHOLIQ NPM: 10.1.03.03.0148

Program Studi Sistem Informasi - Fakultas Teknik

Email: kholiq007@ymail.com

UNIVERSITAS NUSANTARA PGRI KEDIRI

ABSTRAK

Nur Kholiq: Sistem Pendukung Keputusan Dalam Pemilihan Motor Bebek Dengan Menggunakan Metode Simple Additive Weighting (SAW), Skripsi, Sistem Informasi, FT UNP Kediri, 2015

Disini penulis mengangkat judul sistem pendukung keputusan dalam pemilihan motor bebek dengan menggunakan metode simple additve weigthing (SAW) dan mengambil motor bebek sebagai objek penelitian, karena motor bebek memiliki varian yang lebih banyak daripada jenis motor lain.

Permasalahan penelitian ini adalah Bagaimana membangun sistem pendukung keputusan dengan menggunakan metode Simple Additive Weighting (SAW) untuk menentukan pemilihan motor bebek yang paling diminati?

Penelitian ini menggunakan pendekatan Penelitian rekayasa Tehnologi Informasi dengan subyek di dealer *UD Ririn jaya motor* di Semen Kabupaten Kediri. Penelitian ini dilaksanakan dengan cara observasi dan interview sebagai cara untuk pengumpulan data sepeda motor.

Kesimpulan hasil penelitian ini adalah Pemberian kriteria-kriteria dalam pemilihan sepeda *motor bebek* dapat membantu dalam mengambil keputusan untuk menentukan sepeda *motor bebek* yang bagus. Dengan Menerapkan metode *Simple Additive Weighting (SAW)* proses pemilihan sepeda *motor bebek* lebih efisien dan praktis.

Berdasarkan simpulan hasil penelitian ini, direkomendasikan: (1) Memberikan suatu gambaran kepada konsumen dalam memilih suatu produk *motor bebek*. (2) Menerapkan sistem pendukung keputusan dengan metode *Simple Additive Weighting* (SAW) untuk membantu konsumen dalam menentukan

sepeda *motor bebek* yang bagus. (3) Merancang sistem pendukung keputusan dengan menggunakan metode *Simple Additive Weighting* (SAW) untuk pemilihan *motor bebek*.

Kata Kunci : SPK, Pemilihan Motor Bebek, Metode SAW

I

I. LATAR BELAKANG

Dealer adalah tempat untuk menjual motor atau mobil. Disini penulis membahas dealer motor bebek, salah satunya dealer UD Ririn Jaya yang berada di Semen Kabupaten Kediri. Dealer UD Ririn Jaya menjual banyak varian motor bebek, sehingga dealer ini mampu menjadi daya tarik bagi konsumen. Namun konsumen bingung untuk menentukan pilihan motor bebek yang sesuai keinginannya karena banyaknya varian motor bebek yang berada di dealer UD Ririn Jaya. Penulis menemukan masalah yang dihadapi dilokasi penelitian. Masalah yang dihadapi adalah konsumen bingung dalam menentukan pemilihan motor bebek yang sesuai keinginannya. Masalah tersebut timbul karena banyaknya varian motor bebek dilokasi penelitian. Untuk membantu menyelesaikan masalah tersebut penulis membangun sebuah aplikasi sistem pendukung keputusan dalam pemilihan motor bebek menggunakan metode SAW (Simple Additive Weighting). Sistem ini mampu memberikan sebuah informasi atau gambaran dalam pembelian motor bebek yang sesuai keinginan konsumen.

Dalam pembuatan Sistem ini memerlukan beberapa kriteria dari konsumen sebagai masukkan untuk menentukkan pemilihan. Perhitungan menggunakan metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. Dalam penyelesaiannya penulis menggunakan Delphi 2010 dan sebagai databasenya menggunakan microsof acces. Keunggulan aplikasi ini dapat memberikan informasi kepada konsumen dalam pemilihan motor bebek dan memberikan informasi untuk dealer sebagai referensi dalam pembelian motor bebek yang paling banyak diminati oleh konsumen.

2

II. METODE

A. Fuzzy Multiple Atribute Decision Making (FMADM)

Fuzzy Multiple Atribute Decision Making (FMADM) adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Inti dari FMADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif yang sudah diberikan (Kusumadewi, Sri,2006). Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah FMADM.antara lain:

- 1. Simple Additive Weighting Method (SAW)
- 2. Weighted Product (WP)
- 3. ELECTRE
- 4. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- 5. *Analytic Hierarchy Process* (AHP)

B. Simple Additive Weighting (SAW)

Merupakan metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari ranting kinerja pada setiap alternatif pada semua kriteria (Kusumadewi, Sri,2006). Metode SAW membutuhkan proses normalisasi matrik keputusan (x) ke suatu skala yang dapat diperbandingkan dengan semua ranting alternatif yang ada. Metode SAW mengenal adanya 2(dua) atribut yaitu kriteria keuntungan (benefit) dan kriteria biaya (cost). Perbedaan mendasar dari kedua kriteria ini adalah dalam pemilihan kriteria ketika mengambil keputusan.

Formula untuk melakukan normalisasi tersebut adalah sebagai berikut :

1

3

$$r_{ij} = \begin{cases} \frac{x_{ij}}{Max} jikajadalahatributkeuntungan (benefit) \\ i & x_{ij} \\ Min & \\ \frac{i}{x_{ij}} jikajadalahatributbiaya (cost) \end{cases}$$

Keterangan:

 r_{ij} = nilai rating kinerja ternormalisasi

 $x_{ii} =$ nilai atribut yang dimiliki dari setiap kriteria

 $\text{Max } x_{ii} = \text{Nilai terbesar dari setiap}_{i} \text{ kriteria}$

 $Min \ x_{ij} = nilai \ terkecil \ dari \ setiap \ kriteria_{i}$

benefit= jika nilai terbesar adalah terbaik

cost = jika nilai terkecil adalah terbaik.

Dengan r_{ij} adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj;i=1,2,...,m dan j=1,2,...,n. Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai berikut:

$$V_i = \sum_{j=1}^n W_j \quad r_{ij}$$

Keterangan:

Vi = rangking untuk setiap alternatif

wj = nilai bobot dari setiap kriteria

rij = nilai rating kinerja ternormalisasi

Nilai Vi yang lebih besar mengindikasikan bahwa alternatif Ai lebih terpilih.

III. HASIL DAN KESIMPULAN

A. ANALISA

Dalam pemilihan *motor bebek* ini ada beberapa kriteria yang ditentukan, kriterianya adalah sebagai berikut:

Tabel 2.1 kriteria

Kriteria	Keterangan
C1	Harga Motor
C2	CC Motor
C3	Konsumsi BBM
C4	Desain
C5	Bengkel Servis

Dari masing-masing kriteria tersebut akan ditentukan bobot-bobotnya. Pada bilangan *fuzzy* dapat dikonversikan ke bilangan *crisp*. Untuk lebih jelas data bobot dibentuk dalam table dibawah ini.

Tabel 2.2 Pembobotan

Bilangan Fuzzy	Nilai
Sangat Rendah	0,2
Rendah	0.4
Sedang	0,6
Tinggi	0,8
Sangat tinggi	1
Bilangan Fuzzy	Nilai
Rendah	0,3
Sedang	0,6
Tinggi	1

1. Perhitungan Pemilihan Dan Penyeleksian Motor Bebek

Tabel 2.3 Motor bebek

Nama	Merk	Harga	CC	Konsumsi	Desain	Bengkel
Motor		Motor	Motor	BBM	Motor	Servis
Shooter	Suzuki	Rp12.000.000	105	Boros	Biasa	Sedikit
Absolute Revo	Honda	Rp13.000.000	110	Irit	Jelek	Banyak
Jupiter Z1	Yamaha	Rp14.000.000	115	Sedang	Bagus	Sedang

5

Memberikan nilai setiap alternative (Ai) pada setiap kriteria (Cj) yang sudah ditentukan.

a. Nilai Harga

Pada variabel nilai harga terdiri dari lima bilangan *fuzzy*, yaitu Sangat Murah, Murah, Sedang, Mahal, Sangat Mahal.

Tabel 2.4 Nilai harga

Harga Motor	Bilangan fuzzy	Nilai
Harga = < 10 - 12 JutA	Sangat Murah	1
Harga= 12 – 14 Juta	Murah	0.8
Harga= 14 – 16 Juta	Sedang	0,6
Harga = 16 - 18 Juta	Mahal	0,4
Harga = 18 - 20 > Juta	Sangat Mahal	0.2

b. Nilai CC

Pada variabel nilai harga terdiri dari lima bilangan *fuzzy*, yaitu Sangat Rendah, Rendah, Sedang, Tinggi, Sangat Tinggi.

Tabel 2.5 Nilai CC Motor

CC Motor	Bilangan Fuzzy	Nilai
CC = < 100 - 110 cc	Sangat Rendah	0.2
CC=110 – 120 cc	Rendah	0.4
CC = 120 - 130 cc	Sedang	0,6
CC = 130 - 140 cc	Tinggi	0,8
CC= 140 - 150 > cc	Sangat Tinggi	1

c. Nilai Konsumsi BBM

Pada variabel nilai harga terdiri dari lima bilangan *fuzzy*, yaitu Sangat Rendah, Rendah, Sedang, Tinggi, Sangat Tinggi,

NUR KHOLIQ | 10.1.03.03.0148 Teknik – Sistem Informasi

Tabel 2.6 Nilai Konsumsi BBM

Konsumsi BBM	Bilangan Fuzzy	Nilai
Sangat Boros	Sangat Rendah	0.2
Boros	Rendah	0.4
Sedang	Sedang	0,6
Irit	Tinggi	0,8
Sangat Irit	Sangat Tinggi	1

d. Nilai Desain

Pada variabel nilai harga terdiri dari tiga bilangan fuzzy, yaitu rendah, Sedang, Tinggi.

Tabel 2.7 Nilai Desain

Desain motor	Bilangan Fuzzy	Nilai
Lebar	Rendah	0.3
Sedang	Sedang	0.6
Ramping	Tinggi	1

e. Nilai Bengkel Servis

Pada variabel nilai harga terdiri dari tiga bilangan *fuzzy*, yaitu Rendah, Sedang, Tinggi.

Tabel 2.8 Nilai Bengkel Servis

Bengkel Servis	Bilangan Fuzzy	Nilai
Sedikit	Rendah	0.3
Sedang	Sedang	0.6
Banyak	Tinggi	1

Supaya lebih jelas dimisalkan untuk *motor bebek* pertama dari tabel diatas adalah *motor bebek* ke-1=shooter, *motor bebek* ke-2=Absolute Revo dan *motor bebek* ke-3= Jupiter Z1. Tabel di bawah ini menunjukkan rating kecocokan dari setiap alternatif pada setiap kriteria.

Tabel 2.9 Rating kecocokan dari setiap alternatif pada setiap kriteria.

		Ketentuan nilai				
No	alternatif	Harga	CC motor	Konsumsi BBM	Desain	Bengkel servis
1	Shooter	1	0.2	0.4	0.6	0.3
2	Absolute revo	0.8	0.2	0.8	0.3	1
3	Jupiter Z1	0.8	0.4	0.6	1	0.6

Dari tabel 8 diubah kedalam matriks keputusan \underline{X} dengan data:

$$X = \begin{pmatrix} 1 & 0.2 & 0.4 & 0.6 & 0.3 \\ 0.8 & 0.2 & 0.8 & 0.3 & 1 \\ 0.8 & 0.4 & 0.6 & 1 & 0.6 \end{pmatrix}$$

Memberikan nilai bobot (W) Untuk menentukan bobot dari seleksi *motor* bebek dibentuk dalam tabel di bawah ini:

Tabel 2.10 Nilai Bobot

Kriteria	Bobot	Nilai
Harga	Sangat murah	1
CC Motor	Sedang	0.6
Konsumsi BBM	Irit	0.8
Desain	Ramping	1
Bengkel Servis	Sedikit	0.3

Melakukan proses normalisasi matrik (R_{ij})

$$r_{11} = \frac{1}{\max(1;0.8;0.8)} = \frac{1}{1} = 1$$

$$r_{12} = \frac{0.2}{\max(0.2; 0.2; 0.4)} = \frac{0.2}{0.4} = 0.5$$

$$r_{21} = \frac{0.8}{\max(1; 0.8; 0.8)} = \frac{0.8}{1} = 0.8$$

Membentuk matrik ternormalisasi

$$R = \begin{pmatrix} 1 & 0.5 & 0.5 & 0.6 & 0.3 \\ 0.8 & 0.5 & 1 & 0.3 & 1 \\ 0.8 & 1 & 0.75 & 1 & 0.6 \end{pmatrix}$$

Melakukan proses perangkingan dengan menggunakan persamaan. Nilai Vi yang lebih besar mengindikasikan bahwa alternatif Ai lebih terpilih.Jadi:

$$V1=(1)(1)+(0.6)(0.5)+(0.8)(0.5)+(1)(0.6)+(0.3)(0.3)$$

$$=1+0.3+0.4+0.6+0.9=3.2$$

$$V2=(1)(0.8)+(0.6)(0.5)+(0.8)(1)+(1)(0.3)+(0.3)(1)$$

$$=0.8+0.3+0.8+0.3+0.3=2.5$$

$$V3=(1)(0.8)+(0.6)(1)+(0.8)(0.75)+(1)(1)+(0.3)(0.6)$$

$$=0.8+0.6+0.6+1+0.24=3.24$$

Nilai terbesar ada pada V3 sehingga sepeda *motor bebek* ke3 adalah alternatif yang terpilih sebagai alternatif terbaik.

Tabel 2.11 Informasi hasil akhir perangkingan

Nama	Merk	Harga	CC	Konsumsi	Desain	Bengkel	Hasil
Motor		Motor	Motor	BBM	Motor	Servis	Akhir
Shooter	Suzuki	1	0.3	0.4	0.6	0.9	3.2
Absolute	Honda	0.8	0.3	0.8	0.3	0.3	2.5
Revo							
Jupiter Z1	Yamaha	0.8	0.6	0.6	1	0.24	3.24

B. PENGUJIAN DAN HASIL

Pengujian yang dilakukan adalah pengujian metode (method testing) dengan menggunakan metode SAW. Metode SAW sebuah kerangka untuk mengambil keputusan dengan efeftif. Pengujian metode berfokus pada tindakan pengguna yang terlihat dan pengguna dapat mengenali output dari sistem, pengujian ini menjalankan sistem pada lingkungan yang aktif dengan menggunakan data yang benar. Pada tahap ini

pengujian pada administrator yang memiliki hak akses sepenuhnya pada sistem. Hasil yang di dapat dari sistem ini mampu memberikan keputusan terbaik dalam pemilihan sepeda motor bebek yang bagus sesuai keinginan.

C. KESIMPULAN

Dengan adanya penelitian ini penulis telah merancang dan membangun suatu sistem pendukung keputusan menggunakan program *Delphi 2010* dengan menggunakan database *Microsoft acces* serta menggunakan SAW (Simple Additive Weighting) sebagai metode, sehingga dapat membantu pihak dealer memberikan suatu informasi pemilihan motor bebek kepada konsumen yang sesuai dengan keinginannya.

IV. DAFTAR PUSTAKA

Abdia Away, Gunaidhi. 2011. *Delphi 2010 firebird*. Informatika:Bandung.

Dani, Mur. "SPK pemiliahn pekerjaan bagi alumni tehnik informatika dengan metode SAW ".06 desember.

http://pelita-informatika.com/adm/foto/428.pdf

Dewi, Kristina. " Penggunaan Sistem Pakar bagi Siswa Kelas X untuk membantu Penjurusan di SMA Wahidiyah Kediri Dengan Metode Forward Channing ". Skripsi. Tidak dipublikasikan. Kediri:SI STMIK.

Giting Munthe, Hotmaria. "SPK penetuan prioritas usulan sertifikasi guru dengan metode SAW". 06 desember 2013.

http://pelita-informatika.com/adm/foto/4210.pdf

Joko usito, Nugroho. sistem pendukung keputusan penilaian proses belajar mengajar menggunakan metode SAW 06 desember 2013. http://eprints.undip.ac.id/40488/1/Nugroho Joko Usito.pdf

Kusumadewi, Sri, 2006, Fuzzy Multi-Attribute Decision Making (FMADM), Graha, yogyakarta.

Parhusip, Suparjoli." SPK pemilihan spare part kendaraan sepeda motor dengan metode SAW ". 06 desember 2013.

http://pelita-informatika.com/adm/foto/424.pdf

Pengertian metode SAW

http://staff.budiluhur.ac.id/deni.mahdiana/files/2013/05/Metode-SAW.pdf

Pengertian Motor Bebek

 $\underline{http://ridertua.com/2011/02/24/asal-usul-motor-bebek-cub-moped/}$

Simanjuntak, Dina meliana. "SPK menentukan kualitas bebek petelur dengan metode SAW ".06 desember 2013.

http://pelita-informatika.com/adm/foto/4329.pdf

Turban, Efraim, and Jay E. Aronson. Decision Support System and Intelligent System, 6th ed. Yogyakarta:Andi. 2005

ı